cost_eco_model_linker.calculate_metrics

Attributes

Functions

default_uncertainty_dict(→ dict)

Creates a dictionary containing default uncertainty parameter settings. Can be modified to control

indicator_params(result_set, scen_ids[, ...])

Calculates key parameters for shelter volume and RCI calculations given uncertainty sampling choices.

reef_condition_rme(results_data, scen_ids, ...)

Calculates reef condition for a set of scenarios in the provided ReefModEngine.jl results_data.

rti_rme(ecol_indicators, rti_intercept)

rfi_rme(total_cover, intercept1, slope1, intercept2, ...)

extract_metrics(results_data, scen_ids, nsims[, ...])

Calculates indicator metrics for a set of scenarios in the provided ReefModEngine.jl results_data and

Module Contents

cost_eco_model_linker.calculate_metrics.THIS_DIR
cost_eco_model_linker.calculate_metrics.default_uncertainty_dict() dict

Creates a dictionary containing default uncertainty parameter settings. Can be modified to control what sources of uncertainty are sampled when calculating metrics.

Returns:

uncertainty_dict – Contains information on what uncertainty types to sample.

  • ecol_uncertint (0 or 1)

    If 1 includes ecological uncertainty by sampling metrics over climate replicates, if 0 just uses mean of metrics over climate replicates.

  • shelt_uncertint (0 or 1)

    Placeholder to be implemented, will sampling uncertainty in shelter volume parameters.

  • expert_uncertint (0 or 1)

    If 1 includes expert uncertainty by sampling RCI condition thresholds over several expert opinions, if 0 uses RCI condition thresholds averaged over experts considered.

  • rti_uncertint (0 or 1)

    If 1 includes rti uncertainty by sampling linear regression parameters used to convert RCI to continuous form.

  • rfi uncert(0 or 1)

    If 1 includes RFI uncertainty by sampling linear regression parameters used to calculate RFI.

Return type:

dict

cost_eco_model_linker.calculate_metrics.indicator_params(result_set, scen_ids, uncertainty_dict=None, juv_max_years=None, max_coral_juv=None)

Calculates key parameters for shelter volume and RCI calculations given uncertainty sampling choices.

Parameters:
  • result_set (dict) – ReefModEngine.jl resultset structure.

  • scen_ids (np.array) – List of scenario IDs to consider (e.g. only sample counterfactual/intervention etc.).

  • uncertainty_dict (dict) – Contains information of which types of uncertainty to sample when processing metrics.

  • juv_max_years (list) – Indices of years to calculate Juveniles max baseline over.

  • max_coral_juv (list[float]) – Max juveniles baseline (can be included instead of using hindcasting baseline).

Returns:

  • max_coral_juv (np.float) – Maximum juveniles baseline.

  • sheltervolume_parameters (np.array) – Parameters for sheltervolume regression models.

  • rci_crit (np.array) – Array of thresholds describing reef condition categories.

cost_eco_model_linker.calculate_metrics.reef_condition_rme(results_data, scen_ids, ecol_uncert, sheltervolume_parameters, rci_crit, maxcoraljuv, nsims)

Calculates reef condition for a set of scenarios in the provided ReefModEngine.jl results_data.

Parameters:
  • results_data (dict) – ReefModEngine.jl resultset structure.

  • scen_ids (np.array) – List of scenario IDs to consider (e.g. only sample counterfactual/intervention etc.).

  • ecol_uncert (int (0 or 1)) – If 1 includes ecological uncertainty by sampling metrics over climate replicates, if 0 just uses mean of metrics over climate replicates.

  • sheltervolume_parameters (np.array) – Currently unused, but when implemented will allow sampling of uncertainty in shelter volume models to calculate shelter volume.

  • rci_crit (np.array) – Array of thresholds describing reef condition categories.

  • maxcoraljuv (np.float) – Max juveniles baseline (can be included instead of using hindcasting baseline).

  • nsims (int) – Number of simulations to sample

Returns:

  • reefcondition (np.array) – Array containing reef condition of size (nsims, nreefs, nyears).

  • metrics_dict (np.array) – Structure containing each of the metrics comprising the RCI, each arrays of size (nsims, nreefs, nyears).

cost_eco_model_linker.calculate_metrics.rti_rme(ecol_indicators, rti_intercept)
cost_eco_model_linker.calculate_metrics.rfi_rme(total_cover, intercept1, slope1, intercept2, slope2)
cost_eco_model_linker.calculate_metrics.extract_metrics(results_data, scen_ids, nsims, uncertainty_dict=None)

Calculates indicator metrics for a set of scenarios in the provided ReefModEngine.jl results_data and saves in a summary array of size (nsims, nreefs*nyears), suitable to be saved in the economics dataframe format.

Parameters:
  • result_set (dict) – ReefModEngine.jl resultset structure.

  • scen_ids (np.array) – List of scenario IDs to consider (e.g. only sample counterfactual/intervention etc.).

  • nsims (int) – Number of simulations to sample

  • uncertainty_dict (dict) – Contains information of which types of uncertainty to sample when processing metrics.

Returns:

save_metrics – Array containing the RCI and each of the metrics comprising the RCI, each arrays of size (nsims, nreefs*nyears, nmetrics). The nmetrics dimension indices correspond to: 0 - RCI 1 - total_cover 2 - shelter_volume 3 - coraljuv_relativecoral 4 - COTSrel_complementary 5 - rubble_complementary

Return type:

np.array