cost_eco_model_linker.calculate_metrics ======================================= .. py:module:: cost_eco_model_linker.calculate_metrics Attributes ---------- .. autoapisummary:: cost_eco_model_linker.calculate_metrics.THIS_DIR Functions --------- .. autoapisummary:: cost_eco_model_linker.calculate_metrics.default_uncertainty_dict cost_eco_model_linker.calculate_metrics.indicator_params cost_eco_model_linker.calculate_metrics.reef_condition_rme cost_eco_model_linker.calculate_metrics.rti_rme cost_eco_model_linker.calculate_metrics.rfi_rme cost_eco_model_linker.calculate_metrics.extract_metrics Module Contents --------------- .. py:data:: THIS_DIR .. py:function:: default_uncertainty_dict() -> dict Creates a dictionary containing default uncertainty parameter settings. Can be modified to control what sources of uncertainty are sampled when calculating metrics. :returns: **uncertainty_dict** -- Contains information on what uncertainty types to sample. - ecol_uncert : int (0 or 1) If 1 includes ecological uncertainty by sampling metrics over climate replicates, if 0 just uses mean of metrics over climate replicates. - shelt_uncert : int (0 or 1) Placeholder to be implemented, will sampling uncertainty in shelter volume parameters. - expert_uncert : int (0 or 1) If 1 includes expert uncertainty by sampling RCI condition thresholds over several expert opinions, if 0 uses RCI condition thresholds averaged over experts considered. - rti_uncert : int (0 or 1) If 1 includes rti uncertainty by sampling linear regression parameters used to convert RCI to continuous form. - rfi uncert : (0 or 1) If 1 includes RFI uncertainty by sampling linear regression parameters used to calculate RFI. :rtype: dict .. py:function:: indicator_params(result_set, scen_ids, uncertainty_dict=None, juv_max_years=None, max_coral_juv=None) Calculates key parameters for shelter volume and RCI calculations given uncertainty sampling choices. :param result_set: ReefModEngine.jl resultset structure. :type result_set: dict :param scen_ids: List of scenario IDs to consider (e.g. only sample counterfactual/intervention etc.). :type scen_ids: np.array :param uncertainty_dict: Contains information of which types of uncertainty to sample when processing metrics. :type uncertainty_dict: dict :param juv_max_years: Indices of years to calculate Juveniles max baseline over. :type juv_max_years: list :param max_coral_juv: Max juveniles baseline (can be included instead of using hindcasting baseline). :type max_coral_juv: list[float] :returns: * **max_coral_juv** (*np.float*) -- Maximum juveniles baseline. * **sheltervolume_parameters** (*np.array*) -- Parameters for sheltervolume regression models. * **rci_crit** (*np.array*) -- Array of thresholds describing reef condition categories. .. py:function:: reef_condition_rme(results_data, scen_ids, ecol_uncert, sheltervolume_parameters, rci_crit, maxcoraljuv, nsims) Calculates reef condition for a set of scenarios in the provided ReefModEngine.jl results_data. :param results_data: ReefModEngine.jl resultset structure. :type results_data: dict :param scen_ids: List of scenario IDs to consider (e.g. only sample counterfactual/intervention etc.). :type scen_ids: np.array :param ecol_uncert: If 1 includes ecological uncertainty by sampling metrics over climate replicates, if 0 just uses mean of metrics over climate replicates. :type ecol_uncert: int (0 or 1) :param sheltervolume_parameters: Currently unused, but when implemented will allow sampling of uncertainty in shelter volume models to calculate shelter volume. :type sheltervolume_parameters: np.array :param rci_crit: Array of thresholds describing reef condition categories. :type rci_crit: np.array :param maxcoraljuv: Max juveniles baseline (can be included instead of using hindcasting baseline). :type maxcoraljuv: np.float :param nsims: Number of simulations to sample :type nsims: int :returns: * **reefcondition** (*np.array*) -- Array containing reef condition of size (nsims, nreefs, nyears). * **metrics_dict** (*np.array*) -- Structure containing each of the metrics comprising the RCI, each arrays of size (nsims, nreefs, nyears). .. py:function:: rti_rme(ecol_indicators, rti_intercept) .. py:function:: rfi_rme(total_cover, intercept1, slope1, intercept2, slope2) .. py:function:: extract_metrics(results_data, scen_ids, nsims, uncertainty_dict=None) Calculates indicator metrics for a set of scenarios in the provided ReefModEngine.jl results_data and saves in a summary array of size (nsims, nreefs*nyears), suitable to be saved in the economics dataframe format. :param result_set: ReefModEngine.jl resultset structure. :type result_set: dict :param scen_ids: List of scenario IDs to consider (e.g. only sample counterfactual/intervention etc.). :type scen_ids: np.array :param nsims: Number of simulations to sample :type nsims: int :param uncertainty_dict: Contains information of which types of uncertainty to sample when processing metrics. :type uncertainty_dict: dict :returns: **save_metrics** -- Array containing the RCI and each of the metrics comprising the RCI, each arrays of size (nsims, nreefs*nyears, nmetrics). The nmetrics dimension indices correspond to: 0 - RCI 1 - total_cover 2 - shelter_volume 3 - coraljuv_relativecoral 4 - COTSrel_complementary 5 - rubble_complementary :rtype: np.array