Generates mean posterior predictions for objects fitted by
bnec. object should be of class
bayesnecfit or bayesmanecfit.
# S3 method for class 'bayesnecfit'
predict(object, ...)
# S3 method for class 'bayesmanecfit'
predict(object, summary = TRUE, robust = FALSE, probs = c(0.025, 0.975), ...)An object of class bayesnecfit or
bayesmanecfit.
Additional arguments to predict.brmsfit if
object is of class bayesnecfit, or to
posterior_predict.brmsfit if object is of class
bayesmanecfit.
Should summary statistics be returned
instead of the raw values? Default is TRUE.
If FALSE (the default) the mean is used as
the measure of central tendency and the standard deviation as
the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead.
Only used if summary is TRUE.
The percentiles to be computed by the quantile
function. Only used if summary is TRUE.
if (FALSE) { # \dontrun{
library(bayesnec)
# Uses default `resolution` and `x_range` to generate `newdata` internally
predict(manec_example)
# Provide user-specified `newdata`
nd_ <- data.frame(x = seq(0, 3, length.out = 200))
predict(manec_example, ecx_val = 50, newdata = nd_, make_newdata = FALSE)
# Predictions for raw input data
nec4param <- pull_out(manec_example, model = "nec4param")
preds <- predict(nec4param, make_newdata = FALSE)
x <- pull_brmsfit(nec4param)$data$x
plot(x, preds[, 1])
} # }