Generates mean posterior predictions for objects fitted by
bnec
. object
should be of class
bayesnecfit
or bayesmanecfit
.
# S3 method for class 'bayesnecfit'
predict(object, ...)
# S3 method for class 'bayesmanecfit'
predict(object, summary = TRUE, robust = FALSE, probs = c(0.025, 0.975), ...)
An object of class bayesnecfit
or
bayesmanecfit
.
Additional arguments to predict.brmsfit
if
object is of class bayesnecfit
, or to
posterior_predict.brmsfit
if object is of class
bayesmanecfit
.
Should summary statistics be returned
instead of the raw values? Default is TRUE
.
If FALSE
(the default) the mean is used as
the measure of central tendency and the standard deviation as
the measure of variability. If TRUE
, the median and the
median absolute deviation (MAD) are applied instead.
Only used if summary
is TRUE
.
The percentiles to be computed by the quantile
function. Only used if summary
is TRUE
.
if (FALSE) { # \dontrun{
library(bayesnec)
# Uses default `resolution` and `x_range` to generate `newdata` internally
predict(manec_example)
# Provide user-specified `newdata`
nd_ <- data.frame(x = seq(0, 3, length.out = 200))
predict(manec_example, ecx_val = 50, newdata = nd_, make_newdata = FALSE)
# Predictions for raw input data
nec4param <- pull_out(manec_example, model = "nec4param")
preds <- predict(nec4param, make_newdata = FALSE)
x <- pull_brmsfit(nec4param)$data$x
plot(x, preds[, 1])
} # }