Prints a summary for objects fitted by bnec
.
x
should be of class bayesnecfit
or
bayesmanecfit
.
# S3 method for class 'bayesnecfit'
print(x, ...)
# S3 method for class 'bayesmanecfit'
print(x, ...)
An object of class bayesnecfit
or
bayesmanecfit
.
Unused.
A summary print of the fitted model as returned for a
brmsfit
object.
# \donttest{
library(bayesnec)
print(manec_example)
#> Warning: Parts of the model have not converged (some Rhats are > 1.05). Be careful when analysing the results! We recommend running more iterations and/or setting stronger priors.
#> Object of class bayesmanecfit
#>
#> Family: gaussian
#> Links: mu = identity; sigma = identity
#>
#> Number of posterior draws per model: 100
#>
#> Model weights (Method: pseudobma_bb_weights):
#> waic wi
#> nec4param 181.68 0.83
#> ecx4param 199.31 0.17
#>
#>
#> Summary of weighted N(S)EC posterior estimates:
#> NB: Model set contains a combination of ECx and NEC
#> models, and is therefore a model averaged
#> combination of NEC and NSEC estimates.
#> Estimate Q2.5 Q97.5
#> N(S)EC 1.45 0.75 1.53
#>
#>
#> Bayesian R2 estimates:
#> Estimate Est.Error Q2.5 Q97.5
#> nec4param 0.86 0.01 0.84 0.88
#> ecx4param 0.85 0.01 0.82 0.87
#>
#>
#> Warning: The following model had Rhats > 1.05 (no convergence):
#> - nec4param
#> - ecx4param
#> Consider dropping them (see ?amend)
nec4param <- pull_out(manec_example, "nec4param")
#> Pulling out model(s): nec4param
print(nec4param)
#> Warning: Parts of the model have not converged (some Rhats are > 1.05). Be careful when analysing the results! We recommend running more iterations and/or setting stronger priors.
#> Object of class bayesnecfit containing the nec4param model
#>
#> Family: gaussian
#> Links: mu = identity; sigma = identity
#> Formula: y ~ bot + (top - bot) * exp(-exp(beta) * (x - nec) * step(x - nec))
#> bot ~ 1
#> top ~ 1
#> beta ~ 1
#> nec ~ 1
#> Data: data (Number of observations: 100)
#> Draws: 2 chains, each with iter = 200; warmup = 150; thin = 1;
#> total post-warmup draws = 100
#>
#> Regression Coefficients:
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> bot -8.42 1.90 -13.58 -5.68 1.21 10 35
#> top 2.17 0.06 2.05 2.26 1.01 95 76
#> beta -0.67 0.25 -1.18 -0.20 1.17 13 44
#> nec 1.46 0.04 1.36 1.53 1.01 58 33
#>
#> Further Distributional Parameters:
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> sigma 0.52 0.04 0.46 0.61 0.99 155 102
#>
#> Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
#> and Tail_ESS are effective sample size measures, and Rhat is the potential
#> scale reduction factor on split chains (at convergence, Rhat = 1).
#>
#>
#> Estimate Q2.5 Q97.5
#> NEC 1.46 1.36 1.53
#>
#>
#> Bayesian R2 estimates:
#> Estimate Est.Error Q2.5 Q97.5
#> R2 0.86 0.01 0.84 0.88
#>
#>
# }