# Example workflow ```python import cost_eco_model_linker as ceml # Filepath to RME runs to process rme_files_path = "./data/eco_linker_example" deployment_model = "./3.5.5 CA Deployment Model" production_model = "./3.7.0 CA Production Model" output_path = "./results" unc_config = ceml.default_uncertainty_dict() # Change the entries in `unc_config` if needed # unc_config["rti_uncert"] = 0 # Number of sims for metrics sampling (default includes ecological and expert uncertainty in RCI calcs) nsims = 10 ceml.evaluate( rme_files_path, nsims, deployment_model, production_model, output_path, uncertainty_dict=unc_config, ) ``` For parallel runs: ```python nsims = 10 ncores = 4 if __name__ == "__main__": ceml.parallel_evaluate( rme_files_path, nsims, ncores, deployment_model, production_model, output_path, uncertainty_dict=unc_config, ) ``` ## Sensitivity analysis ```python import cost_eco_model_linker as ceml prod_cost_model = "./models/3.8.0 CA Production Model.xlsx" deploy_cost_model = "./models/3.8.0 CA Deployment Model.xlsx" # Number of samples to take (must be power of 2) N = 2**7 # Samples model and returns an SALib problem specification with results under the # `cost_model_results` key. prod_sp = ceml.run_production_model(prod_cost_model, N) deploy_sp = ceml.run_deployment_model(deploy_cost_model, N) # Conduct and save sensitivity analysis results ceml.extract_sa_results(prod_sp, "./figs/prod/") ceml.extract_sa_results(deploy_sp, "./figs/deploy/") ``` The above will generate a set of figures (for production or deployment costs). Example PAWN analysis results: ![PAWN SA barplot](./_static/figs/prod/operational_cost_pawn_barplot_SA.png)